Предположим, что в учебной канцелярии возникла необходимость сравнить успеваемость двух групп. Как это сделать? Понятно, что в обеих группах есть "отличники" и "двоечники", т. е. существует определенный разброс оценок по разным дисциплинам. Если же будут выбраны усредненные значения, не учитывающие разброса, то в общем (с неизбежными погрешностями) мы получим основания для того, чтобы сравнивать, т. к. располагаем дискретными значениями. Скажем, в одной группе средний балл получился равным 4,9, а в другой — 3,1. Понятно, что первая группа по успеваемости значительно превосходит вторую, хотя для двух конкретных студентов из этих групп это соотношение может быть несправедливым.
Конечно, в этом алгоритме есть недостатки, которые являются неизбежной платой за возможность сравнения. В той группе, где средний балл оказался равным 3,1, отдельный студент может иметь пятерки по всем предметам. Невзирая на это, вся группа числится в отстающих. Кого-то это может не устраивать, но такова объективная реальность, таков механизм, таков алгоритм.