Введение в цифровую графику



              

Замечание


Надеемся, что всем понятно, почему в этом случае нельзя использовать, например, числа "10", "11", "12" и т. д.? Потому что, если мы говорим о шестнадцатеричной системе счисления, то должно быть шестнадцать цифр, а не чисел.

И десятичное число "10" стали обозначать латинской буквой "А" (точнее, "цифрой А"). Соответственно, дальше идут цифры "В", "С", "D", "Е" и "Р.

Поскольку мы намеревались построить шестнадцатеричную систему, то, начиная с нуля, здесь как раз и получится 16 цифр. Например, цифра "D" — это десятичное число "13", а цифра "F" — это десятичное число "15".

Когда к шестнадцатеричному числу "F" прибавляем единицу, то, поскольку эти цифры у нас кончились, в этом разряде ставим "О", а в следующий разряд переносим единицу, поэтому получается, что десятичное число "16" будет представлено в шестнадцатеричной системе счисления числом "10", т. е. получается "шестнадцатеричная десятка". Соединим десятичные и шестна-дцатеричные числа в единую таблицу (табл. 4.5).

Таблица 4.5. Соответствие десятичных и шестнадцатеричных чисел

Десятичное число

Шести адцате-ричное число

Десятичное число

Шести адцате-ричное число

0-9

0-9

29

1D

10

А

30


11

12

В

С

31

32-41

1F

20-29

13

D

42-47

2A-2F

14

Е

48-255

30-FF

15

F

256

100

16

10

512

200

17-25

11-19

1024

400

26


1280

500

27


4096

1000

28

1C



Шестнадцатеричная система используется, чтобы более компактно записывать двоичную информацию. В самом деле, "шестнадцатеричная тысяча", состоящая из четырех разрядов, в двоичном виде занимает тринадцать разрядов (100016 = 10000000000002).

При обсуждении систем счисления неоднократно фигурировали "десятки", "сотни" и "тысячи", поэтому необходимо обратить внимание на так называемые "круглые" числа.









Содержание    Назад    Вперед